Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Endocrinol ; 258(2)2023 08 01.
Article in English | MEDLINE | ID: covidwho-20243273

ABSTRACT

Obesity is associated with a higher risk of severe coronavirus disease 2019 (COVID-19) and increased mortality. In the current study, we have investigated the expression of ACE2, NRP1, and HMGB1, known to facilitate severe acute respiratory symptom coronavirus-2 (SARS-CoV-2) cell entry, in adipose tissue from non-COVID-19 control patients with normal weight, overweight, and obesity. All factors were expressed, but no significant differences between the groups were observed. Furthermore, diabetes status and medications did not affect the expression of ACE2. Only in obese men, the expression of ACE2 in adipose tissue was higher than in obese women. In the adipose tissue from patients who died from COVID-19, SARS-CoV-2 was detected in the adipocytes even though the patients died more than 3 weeks after the acute infection. This suggests that adipocytes may act as reservoirs for the virus. In COVID-19 patients, the expression of NRP1 was increased in COVID-19 patients with overweight and obesity. Furthermore, we observed an increased infiltration with macrophages in the COVID-19 adipose tissues compared to control adipose tissue. In addition, crown-like structures of dying adipocytes surrounded by macrophages were observed in the adipose tissue from COVID-19 patients. These data suggest that in obese individuals, in addition to an increased mass of adipose tissue that could potentially be infected, increased macrophage infiltration due to direct infection with SARS-CoV-2 and sustained viral shedding, rather than preinfection ACE2 receptor expression, may be responsible for the increased severity and mortality of COVID-19 in patients with obesity.


Subject(s)
COVID-19 , Male , Humans , Female , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Overweight/complications , Peptidyl-Dipeptidase A/metabolism , Adipocytes/metabolism , Obesity/complications , Obesity/metabolism
2.
Adv Sci (Weinh) ; 10(5): e2206001, 2023 02.
Article in English | MEDLINE | ID: covidwho-2286536

ABSTRACT

Tumor-associated adipocytes (TAAs) recruit monocytes and promote their differentiation into tumor-associated macrophages (TAMs) that support tumor development. Here, TAAs are engineered to promote the polarization of TAMs to the tumor suppressive M1 phenotype. Telratolimod, a toll-like receptor 7/8 agonist, is loaded into the lipid droplets of adipocytes to be released at the tumor site upon tumor cell-triggered lipolysis. Locally administered drug-loaded adipocytes increased tumor suppressive M1 macrophages in both primary and distant tumors and suppressed tumor growth in a melanoma model. Furthermore, drug-loaded adipocytes improved CD8+ T cell-mediated immune responses within the tumor microenvironment and favored dendritic cell maturation in the tumor draining lymph nodes.


Subject(s)
Melanoma , Tumor-Associated Macrophages , Humans , Macrophages , Immunotherapy , Adipocytes/pathology , Tumor Microenvironment
3.
Adipocyte ; 12(1): 2194034, 2023 12.
Article in English | MEDLINE | ID: covidwho-2284153

ABSTRACT

The renin-angiotensin system (RAS) operates within adipose tissue. Obesity-related changes can affect adipose RAS, predisposing to hypertension, type 2 diabetes, and possibly severe COVID-19. We evaluated the in vitro research on human adipose RAS and identified gaps in the literature. Medline (Ovid), Embase (Ovid), Web of Science, Scopus, and 1findr were searched to identify relevant studies. Fifty primary studies met our inclusion criteria for analysis. Expression of RAS components (n = 14), role in differentiation (n = 14), association with inflammation (n = 15) or blood pressure (n = 7) were investigated. We found (1) obesity-related changes in RAS were frequently studied (30%); (2) an upswing of articles investigating adipose ACE-2 expression since the COVID-19 pandemic; (3) a paucity of papers on AT2R and Ang (1-7)/MasR which counterbalance Ang II/ART1; (4) weight loss lowered adipose ACE-2 mRNA expression; and (5) angiotensin receptor blockers (ARBs) reduced deleterious effects of angiotensin II. Overall, these studies link Ang II/ATR1 signalling to impaired adipogenesis and a pro-inflammatory dysfunctional adipose tissue, with ATR1 blockade limiting these responses. ACE-2 may mitigate Ang II effects by converting it to Ang(1-7) which binds MasR. More work is needed to understand adipose RAS in various pathologic states such as obesity and COVID-19 infection.T.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , Renin-Angiotensin System/genetics , SARS-CoV-2 , Angiotensin Receptor Antagonists/pharmacology , Pandemics , Diabetes Mellitus, Type 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Adipose Tissue/metabolism , Adipocytes/metabolism , Obesity/metabolism
4.
Front Immunol ; 14: 1083191, 2023.
Article in English | MEDLINE | ID: covidwho-2251354

ABSTRACT

Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.


Subject(s)
COVID-19 , Immunity, Innate , Humans , SARS-CoV-2 , Adipose Tissue , Adipocytes/physiology
5.
Int J Mol Sci ; 23(13)2022 Jul 05.
Article in English | MEDLINE | ID: covidwho-1934138

ABSTRACT

Long-chain noncoding RNAs (lncRNAs) are RNAs that do not code for proteins, widely present in eukaryotes. They regulate gene expression at multiple levels through different mechanisms at epigenetic, transcription, translation, and the maturation of mRNA transcripts or regulation of the chromatin structure, and compete with microRNAs for binding to endogenous RNA. Adipose tissue is a large and endocrine-rich functional tissue in mammals. Excessive accumulation of white adipose tissue in mammals can cause metabolic diseases. However, unlike white fat, brown and beige fats release energy as heat. In recent years, many lncRNAs associated with adipogenesis have been reported. The molecular mechanisms of how lncRNAs regulate adipogenesis are continually investigated. In this review, we discuss the classification of lncRNAs according to their transcriptional location. lncRNAs that participate in the adipogenesis of white or brown fats are also discussed. The function of lncRNAs as decoy molecules and RNA double-stranded complexes, among other functions, is also discussed.


Subject(s)
Adipogenesis , RNA, Long Noncoding , Adipocytes/metabolism , Adipocytes, Brown/metabolism , Adipogenesis/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Mammals/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
6.
Aesthet Surg J ; 42(11): NP662-NP674, 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-1901113

ABSTRACT

BACKGROUND: CBL-514 is a novel injectable drug that may be safe and efficacious for localized abdominal subcutaneous fat reduction. OBJECTIVES: The aim of this study was to assess the safety and efficacy of CBL-514 in reducing abdominal subcutaneous fat volume and thickness. METHODS: This Phase IIa, open-label, random allocation study consisted of a 6-week treatment period and follow-up at 4 and 8 weeks following the last treatment. Participants were randomly allocated to receive 1.2 mg/cm2 (180 mg), 1.6 mg/cm2 (240 mg), or 2.0 mg/cm2 (300 mg) of CBL-514 with up to 4 treatments, each comprising 60 injections into the abdominal adipose layer. Changes in abdominal subcutaneous fat were assessed by ultrasound at follow-up visits. Treatment-emergent adverse events were recorded. RESULTS: Higher doses of CBL-514 (unit dose, 2.0 and 1.6 mg/cm2) significantly improved the absolute and percentage reduction in abdominal fat volume (P < 0.00001) and thickness (P < 0.0001) compared with baseline. Although the COVID-19 pandemic halted some participant recruitment and follow-ups, analysis was unaffected, even after sample size limitations. CONCLUSIONS: CBL-514 injection at multiple doses up to 300 mg with a unit dose of 2.0 mg/cm2 is safe, well-tolerated, and reduced abdominal fat volume and thickness by inducing adipocyte apoptosis. Although other procedures exist to treat abdominal fat, they have limitations and may cause complications. At a dose of 2.0 mg/cm2, CBL-514 safely and significantly reduced abdominal fat volume by 24.96%, making it a promising new treatment for routine, nonsurgical abdominal fat reduction in dermatologic clinics.


Subject(s)
COVID-19 , Subcutaneous Fat, Abdominal , Adipocytes , Apoptosis , Humans , Lipolysis , Pandemics , Subcutaneous Fat/diagnostic imaging , Subcutaneous Fat, Abdominal/diagnostic imaging , Subcutaneous Fat, Abdominal/surgery , Treatment Outcome
7.
Cell Metab ; 34(5): 656-657, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1850884

ABSTRACT

Adipose tissue has been linked to inflammation and various physiological processes. In this issue of Cell Metabolism, Caputa et al. describe that perinodal adipocytes adapt their metabolism to actively participate in an immune response against intracellular Listeria monocytogenes.


Subject(s)
Adipocytes , Adipose Tissue , Adipocytes/metabolism , Adipose Tissue/metabolism , Humans , Immunity , Inflammation/metabolism
8.
J Endocrinol Invest ; 45(5): 1021-1029, 2022 May.
Article in English | MEDLINE | ID: covidwho-1783035

ABSTRACT

OBJECTIVE: Obesity is a recognized risk factor for the progression to severe forms of COVID-19, yet the mechanisms of the association are unclear. METHODS: Subcutaneous abdominal adipose tissue specimens of subjects deceased from COVID-19 (n = 23) were compared to those of controls dying abruptly from causes other than infectious (accidental trauma, sudden cardiac death). Alterations of lung parenchyma consistent with moderate to severe disease were detected in all COVID-19 cases, not in controls. Investigations included: histopathologic features, detection of virus antigens and genome, characterization of infiltrating leukocytes, transcription levels of immune-related genes. RESULTS: By RT-PCR, the SARS-CoV-2 genome was detected in the adipose tissue of 13/23 (56%) cases of the COVID-19 cohort. The virus nucleocapsid antigen was detected in the cytoplasm of 1-5% adipocytes in 12/12 COVID-19 cases that were virus-positive by PCR in the adipose tissue (one case could not be assessed due insufficient tissue). The adipose tissue of COVID-19 cases showed leukocyte infiltrates and upregulation of the interferon-alpha pathway. After adjusting for age and sex, the activation score of IFN-alpha was directly related with transcription levels of the ACE2 gene, a key entry factor of SARS-CoV-2. CONCLUSIONS: In lethal COVID-19 cases, the SARS-CoV-2 nucleocapsid antigen has been detected in a sizeable proportion of adipocytes, showing that the virus may directly infect the parenchymal cells of subcutaneous fat. Infection appears to activate the IFN alpha pathway and to attract infiltrating leukocytes. Due to the huge numbers of adipocytes in adults, the adipose tissue represents a significant reservoir for SARS-CoV-2 and an important source of inflammatory mediators.


Subject(s)
Adipocytes , Adipose Tissue , COVID-19 , Interferon-alpha , SARS-CoV-2 , Adipocytes/immunology , Adipose Tissue/immunology , Adult , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Humans , Interferon-alpha/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
9.
Mucosal Immunol ; 14(6): 1224-1234, 2021 11.
Article in English | MEDLINE | ID: covidwho-1387186

ABSTRACT

Epidemiological evidence establishes obesity as an independent risk factor for increased susceptibility and severity to viral respiratory pneumonias associated with H1N1 influenza and SARS-CoV-2 pandemics. Given the global obesity prevalence, a better understanding of the mechanisms behind obese susceptibility to infection is imperative. Altered immune cell metabolism and function are often perceived as a key causative factor of dysregulated inflammation. However, the contribution of adipocytes, the dominantly altered cell type in obesity with broad inflammatory properties, to infectious disease pathogenesis remains largely ignored. Thus, skewing of adipocyte-intrinsic cellular metabolism may lead to the development of pathogenic inflammatory adipocytes, which shape the overall immune responses by contributing to either premature immunosenescence, delayed hyperinflammation, or cytokine storm in infections. In this review, we discuss the underappreciated contribution of adipocyte cellular metabolism and adipocyte-produced mediators on immune system modulation and how such interplay may modify disease susceptibility and pathogenesis of influenza and SARS-CoV-2 infections in obese individuals.


Subject(s)
Adipocytes/metabolism , COVID-19/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , SARS-CoV-2/metabolism , Adipocytes/pathology , Adipocytes/virology , COVID-19/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Influenza, Human/pathology
11.
Biol Aujourdhui ; 215(1-2): 63-72, 2021.
Article in French | MEDLINE | ID: covidwho-1358360

ABSTRACT

Obesity is considered a pandemic responsible for millions of deaths worldwide for many years. At the end of 2019, the Coronavirus disease 2019 (COVID-19) appeared, causing the death of more than a million people in less than a year. Numerous studies suggest that obesity could be defined as key to the onset of severe forms of this emerging disease. Indeed, SARS-CoV2 infects the host by binding to ACE2 receptors present on the surface of the cells and causes excessive secretion of pro-inflammatory cytokines including IL-1, IL-6 and TNF-α, which lead to developing acute respiratory distress syndrome (ARDS). It therefore seems essential to make up effective preventive strategies to protect this part of the population from the risk of developing a severe form of COVID-19. The ketogenic diet, which is low in sugars and high in fat, has interesting properties, both in the fight against obesity but also against severe infections. This article focuses on the latest scientific advances that make it possible to consider the ketogenic diet as a preventive strategy that simultaneously reduces the development of obesity while strengthening the immune system, two key actions in the fight against SARS-CoV2 infections and severe forms of COVID-19.


TITLE: Obésité, inflammation et COVID-19 : intérêt préventif de l'alimentation cétogène ? ABSTRACT: L'obésité est considérée comme une pandémie responsable de plusieurs millions de morts dans le monde depuis de nombreuses années. Fin 2019 est apparue la maladie à Coronavirus 2019 (COVID-19) qui a provoqué la mort de plus d'un million de personnes en moins d'un an. De nombreuses études suggèrent que l'obésité pourrait être un paramètre clé dans l'apparition des formes graves de cette maladie émergente. En effet, le SARS-CoV2 infecte l'hôte en se fixant aux récepteurs ACE2 présents à la surface des cellules et entraîne une sécrétion excessive de cytokines pro-inflammatoires notamment l'IL-1, l'IL-6 et le TNF-α qui conduisent au développement d'un syndrome de détresse respiratoire aigu (SDRA). Il paraît essentiel d'élaborer des stratégies préventives efficaces pour protéger cette partie de la population du risque de développer une forme grave de COVID-19. L'alimentation cétogène, pauvre en sucres et riche en lipides, présente d'intéressantes propriétés, à la fois pour la lutte contre l'obésité mais également contre les infections sévères. Cet article fait le point sur les dernières avancées scientifiques qui permettent d'envisager l'alimentation cétogène comme une stratégie préventive visant à diminuer le développement de l'obésité et à renforcer le système immunitaire, deux actions clés dans la lutte contre l'infection au SARS-CoV2 et le développement de formes graves de COVID-19.


Subject(s)
COVID-19/prevention & control , Diet, Ketogenic , Inflammation/etiology , Obesity/prevention & control , Pandemics , SARS-CoV-2 , Adipocytes/metabolism , Animals , COVID-19/complications , COVID-19/immunology , COVID-19/physiopathology , Cytokine Release Syndrome/etiology , Diet, Ketogenic/adverse effects , Disease Susceptibility , Humans , Inflammation/physiopathology , Inflammation/prevention & control , Leptin/physiology , Obesity/complications , Obesity/diet therapy , Obesity/epidemiology , Respiratory Distress Syndrome/etiology
12.
Cell Metab ; 33(8): 1592-1609.e7, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1300705

ABSTRACT

Glucocorticoids (GCs) are widely used as anti-inflammatory drugs, but their long-term use has severe metabolic side effects. Here, by treating multiple individual adipose stem cell-derived adipocytes and induced pluripotent stem cell-derived hepatocytes with the potent GC dexamethasone (Dex), we uncovered cell-type-specific and individual-specific GC-dependent transcriptomes and glucocorticoid receptor (GR) cistromes. Individual-specific GR binding could be traced to single-nucleotide polymorphisms (SNPs) that altered the binding motifs of GR or its cooperating factors. We also discovered another set of genetic variants that modulated Dex response through affecting chromatin accessibility or chromatin architecture. Several SNPs that altered Dex-regulated GR binding and gene expression controlled Dex-driven metabolic perturbations. Remarkably, these genetic variations were highly associated with increases in serum glucose, lipids, and body mass in subjects on GC therapy. Knowledge of the genetic variants that predispose individuals to metabolic side effects allows for a precision medicine approach to the use of clinically relevant GCs.


Subject(s)
Epigenomics , Glucocorticoids , Adipocytes/metabolism , Anti-Inflammatory Agents , Dexamethasone/adverse effects , Glucocorticoids/adverse effects , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
13.
Front Immunol ; 12: 649359, 2021.
Article in English | MEDLINE | ID: covidwho-1295634

ABSTRACT

Obesity is one of the foremost risk factors in coronavirus infection resulting in severe illness and mortality as the pandemic progresses. Obesity is a well-known predisposed chronic inflammatory condition. The dynamics of obesity and its impacts on immunity may change the disease severity of pneumonia, especially in acute respiratory distress syndrome, a primary cause of death from SARS-CoV-2 infection. The adipocytes of adipose tissue secret leptin in proportion to individuals' body fat mass. An increase in circulating plasma leptin is a typical characteristic of obesity and correlates with a leptin-resistant state. Leptin is considered a pleiotropic molecule regulating appetite and immunity. In immunity, leptin functions as a cytokine and coordinates the host's innate and adaptive responses by promoting the Th1 type of immune response. Leptin induced the proliferation and functions of antigen-presenting cells, monocytes, and T helper cells, subsequently influencing the pro-inflammatory cytokine secretion by these cells, such as TNF-α, IL-2, or IL-6. Leptin scarcity or resistance is linked with dysregulation of cytokine secretion leading to autoimmune disorders, inflammatory responses, and increased susceptibility towards infectious diseases. Therefore, leptin activity by leptin long-lasting super active antagonist's dysregulation in patients with obesity might contribute to high mortality rates in these patients during SARS-CoV-2 infection. This review systematically discusses the interplay mechanism between leptin and inflammatory cytokines and their contribution to the fatal outcomes in COVID-19 patients with obesity.


Subject(s)
COVID-19/pathology , Leptin/immunology , Obesity/pathology , SARS-CoV-2/immunology , Adipocytes/metabolism , Antigen-Presenting Cells/immunology , COVID-19/mortality , Cytokines/immunology , Disease Susceptibility/pathology , Humans , Leptin/blood , Monocytes/immunology , Risk Factors , Severity of Illness Index , Th1 Cells/immunology
14.
Arterioscler Thromb Vasc Biol ; 41(2): 614-627, 2021 02.
Article in English | MEDLINE | ID: covidwho-1105574

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Receptor for Advanced Glycation End Products/metabolism , Adipocytes/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , COVID-19/epidemiology , Cytokine Release Syndrome , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Humans , Interferon Regulatory Factor-7/metabolism , Lung/metabolism , Myocardium/metabolism , NF-kappa B/metabolism , Obesity/complications , Obesity/metabolism , Pandemics , SARS-CoV-2
15.
Nature ; 588(7838): 466-472, 2020 12.
Article in English | MEDLINE | ID: covidwho-1075229

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.


Subject(s)
Myocardium/cytology , Single-Cell Analysis , Transcriptome , Adipocytes/classification , Adipocytes/metabolism , Adult , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Epithelial Cells/classification , Epithelial Cells/metabolism , Epithelium , Female , Fibroblasts/classification , Fibroblasts/metabolism , Gene Expression Profiling , Genome-Wide Association Study , Heart Atria/anatomy & histology , Heart Atria/cytology , Heart Atria/innervation , Heart Ventricles/anatomy & histology , Heart Ventricles/cytology , Heart Ventricles/innervation , Homeostasis/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Male , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocytes, Cardiac/classification , Myocytes, Cardiac/metabolism , Neurons/classification , Neurons/metabolism , Pericytes/classification , Pericytes/metabolism , Receptors, Coronavirus/analysis , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Stromal Cells/classification , Stromal Cells/metabolism
16.
Med Hypotheses ; 144: 110176, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-728773

ABSTRACT

COVID-19 infection causes considerable morbidity and mortality, especially to those who are aged, have impaired renal function and are obese. We propose to examine the potential utility of oral activated charcoal with the hypothesis that such treatment would lower absorption of microbiome derived toxins and ameliorate systemic oxidant stress and inflammation.


Subject(s)
COVID-19/therapy , Charcoal/pharmacology , Gastrointestinal Microbiome , Kidney Diseases/complications , Obesity/complications , Adipocytes/cytology , Adipocytes/metabolism , Antiviral Agents/therapeutic use , COVID-19/microbiology , Cytokines/metabolism , Humans , Inflammation , Models, Theoretical , Oxidants/metabolism , Oxidative Stress , Risk
17.
Int J Mol Sci ; 21(16)2020 Aug 12.
Article in English | MEDLINE | ID: covidwho-717744

ABSTRACT

The coronavirus disease 2019 COVID-19 pandemic is rapidly spreading worldwide and is becoming a major public health crisis. Increasing evidence demonstrates a strong correlation between obesity and the COVID-19 disease. We have summarized recent studies and addressed the impact of obesity on COVID-19 in terms of hospitalization, severity, mortality, and patient outcome. We discuss the potential molecular mechanisms whereby obesity contributes to the pathogenesis of COVID-19. In addition to obesity-related deregulated immune response, chronic inflammation, endothelium imbalance, metabolic dysfunction, and its associated comorbidities, dysfunctional mesenchymal stem cells/adipose-derived mesenchymal stem cells may also play crucial roles in fueling systemic inflammation contributing to the cytokine storm and promoting pulmonary fibrosis causing lung functional failure, characteristic of severe COVID-19. Moreover, obesity may also compromise motile cilia on airway epithelial cells and impair functioning of the mucociliary escalators, reducing the clearance of severe acute respiratory syndrome coronavirus (SARS-CoV-2). Obese diseased adipose tissues overexpress the receptors and proteases for the SARS-CoV-2 entry, implicating its possible roles as virus reservoir and accelerator reinforcing violent systemic inflammation and immune response. Finally, anti-inflammatory cytokines like anti-interleukin 6 and administration of mesenchymal stromal/stem cells may serve as potential immune modulatory therapies for supportively combating COVID-19. Obesity is conversely related to the development of COVID-19 through numerous molecular mechanisms and individuals with obesity belong to the COVID-19-susceptible population requiring more protective measures.


Subject(s)
Coronavirus Infections/epidemiology , Cytokines/metabolism , Obesity/epidemiology , Pneumonia, Viral/epidemiology , Adipocytes/metabolism , Animals , COVID-19 , Coronavirus Infections/immunology , Cytokines/genetics , Humans , Obesity/immunology , Pandemics , Pneumonia, Viral/immunology
18.
Mol Cell Endocrinol ; 515: 110917, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-661768

ABSTRACT

Obesity patients are more susceptible to develop COVID-19 severe outcome due to the role of angiotensin-converting enzyme 2 (ACE2) in the viral infection. ACE2 is regulated in the human cells by different genes associated with increased (TLR3, HAT1, HDAC2, KDM5B, SIRT1, RAB1A, FURIN and ADAM10) or decreased (TRIB3) virus replication. RNA-seq data revealed 14857 genes expressed in human subcutaneous adipocytes, including genes mentioned above. Irisin treatment increased by 3-fold the levels of TRIB3 transcript and decreased the levels of other genes. The decrease in FURIN and ADAM10 expression enriched diverse biological processes, including extracellular structure organization. Our results, in human subcutaneous adipocytes cell culture, indicate a positive effect of irisin on the expression of multiple genes related to viral infection by SARS-CoV-2; furthermore, translatable for other tissues and organs targeted by the novel coronavirus and present, thus, promising approaches for the treatment of COVID-19 infection as therapeutic strategy to decrease ACE2 regulatory genes.


Subject(s)
Adipocytes/drug effects , Fibronectins/pharmacology , Gene Expression Regulation/drug effects , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cells, Cultured , Coronavirus Infections/virology , Fibronectins/genetics , Fibronectins/metabolism , Furin/genetics , Furin/metabolism , Gene Ontology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Biological , Molecular Sequence Annotation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Obesity/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , SARS-CoV-2 , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , rab1 GTP-Binding Proteins/genetics , rab1 GTP-Binding Proteins/metabolism
19.
Inflamm Res ; 69(9): 825-839, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-593429

ABSTRACT

PURPOSE: Novel Coronavirus disease 2019 (COVID-19), is an acute respiratory distress syndrome (ARDS), which is emerged in Wuhan, and recently become worldwide pandemic. Strangely, ample evidences have been shown that the severity of COVID-19 infections varies widely from children (asymptomatic), adults (mild infection), as well as elderly adults (deadly critical). It has proven that COVID-19 infection in some elderly critical adults leads to a cytokine storm, which is characterized by severe systemic elevation of several pro-inflammatory cytokines. Then, a cytokine storm can induce edematous, ARDS, pneumonia, as well as multiple organ failure in aged patients. It is far from clear till now why cytokine storm induces in only COVID-19 elderly patients, and not in young patients. However, it seems that aging is associated with mild elevated levels of local and systemic pro-inflammatory cytokines, which is characterized by "inflamm-aging". It is highly likely that "inflamm-aging" is correlated to increased risk of a cytokine storm in some critical elderly patients with COVID-19 infection. METHODS: A systematic search in the literature was performed in PubMed, Scopus, Embase, Cochrane Library, Web of Science, as well as Google Scholar pre-print database using all available MeSH terms for COVID-19, Coronavirus, SARS-CoV-2, senescent cell, cytokine storm, inflame-aging, ACE2 receptor, autophagy, and Vitamin D. Electronic database searches combined and duplicates were removed. RESULTS: The aim of the present review was to summarize experimental data and clinical observations that linked the pathophysiology mechanisms of "inflamm-aging", mild-grade inflammation, and cytokine storm in some elderly adults with severe COVID-19 infection.


Subject(s)
Aging , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/virology , Inflammation/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Adipocytes/cytology , Age Factors , Aged , Angiotensin II Type 2 Receptor Blockers/pharmacology , Autophagy , Betacoronavirus , COVID-19 , Cellular Senescence , Cytokines/immunology , Humans , Immune System , Inflammation/physiopathology , Pandemics , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 2/metabolism , SARS-CoV-2 , Vitamin D/metabolism , Vitamin D Deficiency
20.
Obesity (Silver Spring) ; 28(7): 1187-1190, 2020 07.
Article in English | MEDLINE | ID: covidwho-125086

ABSTRACT

Coronavirus disease-2019 (COVID-19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demonstrates high morbidity and mortality caused by development of a severe acute respiratory syndrome connected with extensive pulmonary fibrosis. In this Perspective, we argue that adipocytes and adipocyte-like cells, such as pulmonary lipofibroblasts, may play an important role in the pathogenic response to SARS-CoV-2. Expression of angiotensin-converting enzyme 2 (the functional receptor for SARS-CoV) is upregulated in adipocytes of patients with obesity and diabetes, which turns adipose tissue into a potential target and viral reservoir. This may explain why obesity and diabetes are potential comorbidities for COVID-19 infections. Similar to the recently established adipocyte-myofibroblast transition, pulmonary lipofibroblasts located in the alveolar interstitium and closely related to classical adipocytes demonstrate the ability to transdifferentiate into myofibroblasts that play an integral part of pulmonary fibrosis. This may significantly increase the severity of the local response to SARS-CoV-2 in the lung. To reduce the severity and mortality associated with COVID-19, we propose to probe for the clinical response to thiazolidinediones, peroxisome proliferator activated receptor γ agonists that are well-known antidiabetic drugs. Thiazolidinediones are able to stabilize lipofibroblasts in their "inactive" state, preventing the transition to myofibroblasts and thereby reducing the development of pulmonary fibrosis and stimulating its resolution.


Subject(s)
Adipocytes/virology , Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL